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Generalized linear models with unknown link
functions

Bani K. Malick and Alan E. Gelfand

Abstract

Generalized linear models are widely used by data analysts. However, the choice of the link

function, i.e., the scale on which the mean is linear in the explanatory variables is often made

arbitrarily . Here we permit the data to estimate the link function by incorporating it as

an unknown in the model. Since the link function is usually taken to be strictly increasing,

by a strictly increasing transformation of its range to the unit interval we can model it

as a strictly increasing cumulative distribution function. The transformation results in a

domain which is [0,11 as well. We model the cumulative distribution function as a mixture

of Beta cumulative distribution functions, noting that the latter family is dense within the

collection of all continuous densities on [0,1]. For the fitting of the model we take a Bayesian

approach, encouraging vague priors, to focus upon the likelihood. We discuss choices of such

priors as well as the integrability of the resultant posteriors. Implementation of the Bayesian

approach is carried out using sampling based methods, in particular, a tailored Metropolis-

within-Gibbs algorithm. An illustrative example utilising data involving wave damage to

cargo ships is provided.
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*1 Introduction

Generalized linear models have by now become a standard class of models for exploration

within the data analyst's tool kit. The evolution of these models along with details on fitting

them is provided in McCullagh and Nelder (1989). The GLIM software for carrying out the

model fitting is widely available.

Generalized linear models have been advocated as an advance over standard linear models

in that they allow for (i) nonnormal sampling mechanisms, (ii) heterogeneous variances which

are captured through the mean-vaxiance relationship of the sampling model, and (iii) a mean

for the observations which need only be linear on a transformed scale. This transformation,

referred to as the link function, is the focus of the present paper. That is, often the stochastic

mechanism for the observations arises naturally as, for example, a binomial or Poisson in

the case of count data. However choice of the scale upon which the transformed mean is

presumed linear is often made arbitrarily. Informal classical diagonostic tools for selecting

a link and for assessing the adequacy of a link are discussed in the McCullagh and Nelder

(1989) drawing upon work of Pregibon (1980) and Hinkley (1985). In particular, employing

a family of power link functions, an approach in the spirit of the Box-Tidwell transformation

can suggest an appropriate power. However, this family insists upon a positive mean and in

addition may be too small within the class of strictly monotone functions.

We treat the link function as another unknown in the generalized linear model specifica-

tion and estimate it jointly with the mean structure. Our approach is thus semiparametric;

we assume a linear parametric form for the mean on a transformed scale where the trans-

formation is expressed nonparametrically. Moreover, for a given linear form our fitted Ulnk

function may be compared with say the canonical link to identify shortcomings of the latter.

Our fitting is within the Bayesian framework treating all model unknowns as random with

inference proceeding from the posterior distribution o1 these unknowns. If prior information

is available say about coefficient parameters we would be happy to use it. However, interest

usually focusses more upon the likelihood whence we would tend to use noninformative
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prior. Recent advances in Bayesian computation g sampling based methods (Gelfand

and Smith, 1990; Smith & Gelfand, 1993) enable reasonably straight forward fitting of

such models. In fact Gibbs sampling was utilised by Dellaportas and Smith (1993) for

implementing the Bayesian analysis of standard gnweralized linear models.

The Dirichlet process prior (Ferguson, 1973) has been the usual modeling tool for non-

parametric Bayesian inference. In an unpublished thesis, Escobar employs the Dirichlet

process prior in investigating a nonparametric version of the simultaneous normal means

problem. This idea has been extended in a series of, as yet unpublished, papers authored

by Escobar, West and Erkanli amongst others to include generalized linear models. In all of

this work the nouparametric aspect of the modelling is introduced at the second stage; the

first stage specification is a fully parametric likelihood. No nonparametric estimate of the

link function results say for comparison with the link assumed in the first stage.

Unpublished work of Czado and Newton introduces a random link into the likelihood

in the binary regression problem. They assume Pr(y, = lzj,P) =G(zF,6) where G is an

unknown cumulative distribution function. G is assumed to be a random draw from a

Dirichiet process prior independent of P. The base measure for G might be normal or

logistic. Czado and Newton show that, with the inclusion of latent variables ui - G such

that Pr(yi = lzi,,l)= Pr(ui _ zxig), G can be ai s out and a straightforward

Gibbs sampler arises. Here the Dirichlet process prior is convenient since the inverse link is

a distribution function. Extension to other generalized linear models is not obvious.

For an arbitrary generalized linear model our approach describes the strictly increasing

link function g, suitably transformed to have range in (0,1), again as an unknown cumulative

distribution function. In the process the resulting domain also becomes (0,1). We model

this function as a mixture of Beta distribution functions appealing to the well known result

that any continuous density on (0,1) can be arbitrarily well approximated by a discrete

mixture of Beta densities. Unlike distributions arising under a Dirichlet process, which

could also be used here, we have a continuous, dense class of distributions admitting an

explicit form. In practice we have treated the number of mixands r, as fixed though a

2



discrete prior could be attempted. We have experimented with a range of r's, for a number

of examples, discovering, perhaps not surprisingly, that robustness occurs with quite small

r. In introducing randomness to this finite mixture model it is simpler assume the mixture

weights to be random rather than the parameters of the Beta densities.

Interesting related nonparametric Bayesian regression work, which also does not employ

Dirichlet process priors, includes Blight and Ott (1975), O'Hagan (1978), Weerahandi and

Zidek (1988) and Angers and Delampady (1992).

The outline of this paper is thus the following. In section 2 we detail our general approach.

Section 3-considers non informative- priurs -appropriate for-vur likelihood specification. In

section 4 we describe the fitting of these models using a sampling based approach. Section

5 examines a data set taken from McCullagh and Nelder (1989) where a Poisson regression

is fit assuming a canonical link. Allowing an unknown link, not surprisingly, we obtain an

improved model. But also, comparison of the estimated link with the canonical link reveals

the nature of the shortcomings of the latter. We conclude with a brief summary.

2 Likelihood form

Recall that a generalized linear model assumes a one-parameter exponential family

form for the distribution of the response y, i.e.,

f(yl6, 0, g, x) = d(y, 0)exp[{Gy - b(8)}/a(0)) (1)

is a density with respect to Lebesgue measure if y is continuous, with respect to counting

measure if y is discrete. Here s - E(y) = b'(O) and var(y)=b"(9)/a(0). Furthermore,

g() -= q = x-z# where z is a pxl known vector of covariates, 6 is an unknown pxl vector

of coefficients and g is a strictly increasing differentiable function. The link function g, often

taken to be the so called canonical link, g(p)=(b')-(j), is assumed unknown as well. In

some generalized linear models such as the binomial and Poisson, a(0) is a known constant.

In general we assume that a(0)=0/v, i.e., that 0 enters as an unknown scale parameter with
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v a known sample iset m. Then given a ample of responses yV, = 1, 2-.. n with sodated

covariates vectors j and sample sem vi the resulting likelihood becomes

LC8, #,A) = I d(y,, O)e*0-4 f {ivi - b(9,)}] (2)
imi

where Oi=(b')-'L(J) and ;N = g-Z(jTf). The likelihood in (2) is infinite dimensional; without

further assumptions it need not be identifiable. For example, if z is a single continuous

covariate, i.e., I = g-(.8o + Pi), then g, fo and 0 cannot be identified.

Our inference approach is Bayesian requiring the specification of a prior f(8, ,g). The

identifiability question from aBayesian point of view, becomes whether the data can inform

about all of the unknown parameters in the model. If yes, provided a proper posterior results,

there is no identifiability problem. If not and if f is improper then the posterior necessarily

is as well and we have an ill-defined Bayesian model. If not and if fis proper then the prior

drives the posterior.

The mapping g is from the space of i, say 11, into R'. As will become obvious shortly, it

is convenient to work with g-, a mapping from RI into fl. Suppose T is a strictly increasing

differentiable transformation from n into (0,1) with J(i/)=T(g-1 (,)). Then J is a strictly

increasing differentiable distribution function. So modeling the function g is equivalent to

modeling an unknown distribution function. A rich class of models may be created as follows.

Let go be a baseline link function for g, perhaps the canonical link, and let J0(71)=T(go1 (7/))

be the cumulative distribution function associated with go. Diaconis and Ylvisaker (1985)

argue that discrete mixtures of Beta densities provide a continuous dense class of models for

densities on (0,1). A general member has the form

h(u) = wjwBe(ucl, d) (3)
1=1

where r denotes the number of mixands, w, Ž_ 0, E w• = 1 and Be(ulcq, dh) denotes the Beta

density in standard form with parameters, ci and di. If IB(u; cQ, da) denotes the incomplete

Beta function associated with Be(u c, 4a) then let

y)= ,J EB(Jo(71); cl, dj). (4)
I=1



Clearly J(i7 ) is a distribution function and ,=g-(?)_ T-C(J(i,)) is readily calculated. Thus

0 (b')-1(j,) is and so given a set of yi, zj vi and a j and 0, we can evaluate the likelihood

(2) directly. Note that calculation of 9(P&) for a given 1A, requires a clumsy inversion for a

corresponding quantile of J( i ) clarifying the advantage to modeling g- 1 . Mixtures other

than Beta could be used, e.g., gammas on R+, uniforms on R'.

We could assume r unknown but do not since in practice this gains little. In our ex-

perience, inference , e.g., estimation of pj, prediction of y,, is very robust to choice of r;

mixtures with r=3 or 4 are virtually indistinguishable from those with much larger r. In

fact, allowing r>n does not insure perfect fit since g is restricted to be monotone. Given r, it

is mathematically easier to assume that the component Beta densities are specified but that

the weights are unknown. We choose the set of cl, d41 to provide a collection of Beta densities

which blanket (0,1). In particular we work with c=Al di = A(r+l-). Hence specification of

g is equivalent to specification of w and we can denote (2) by L(f, w, 0).

The choice of T is not a modeling issue. In principle any strictly increasing differentiable

function from D2 to . 1 could be used. For fl = RI we might use T(.) =e()/(l+e(')), for

fl R+ we might use T(.) -(-)/{1+(-)}, for 12=(0,11 we might use T(-)=(.). In practice

computational difficulties can be ameliorated by centering and scaling these choices. For

example, if go(A) = log ,, g =.(q) = e" and over/under flow problems will arise if Ij/il can

be large. However in (4), J0 (77) is required, not go1 (•). How can we choose T so that,

given i/, computation of the composite function, T(go1 (i/)) avoids these problems? If we

try T(-) =(-)/{1 + (-)}, for large 1 ,1, within the accuracy of the computer, T will be 0

or 1. Consider instead TkA(.) = k1(-)t'/{1 + kL(-)k•} with k1 = elb, k2 = 11b. Then

Jo(7/) = e('Y-.)/b/{1 + e(•-G)/b}. Hence if a "centers" the 71i and b "scales" them, JO can be

computed without problem. Treating min y, and max yj as a range for /i enables a range for

11i from which simple choices for a and b hence k, and k2, can be made. There is no notion
of a best choice and, to keep notation simpler, we suppress kjand k2 in the sequel.
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3 Prior specification and proper posteriors

Since primary interest is in the likelihood and since only occasionally will there be

useful prior information we consider vague specification of the prior f(, W2, ý). In the case of

generalized linear models, where g is specified, a multivariate normal prior for # is customary

yielding a fiat prior as the precision matrix tends to 0. For such models, assuming 0b is known,

Ibrahim and Laud (1991) consider Jeffreys's prior, the square root of the determinant of

Fisher's information matrix. Let X be the nx p matrix whose rows are the z7Ts and let

M be an nxn diagonal matrix such that M,[,{g' (p4)} 2 V(pi,)-j 1 where V(L)=- b"(O). Then

-jtb' sspriorTisprop 06XYX1 . `oui'"'a-,eT determines g, so given •,

Jeffreys's prior is a specification of Aflw, 0), i.e.,

f(,O1W, 0)) OC IXTMXI•12.()

In evaluating (5) we require g'(&j) = dqi/dp&. But 4j/dn,) =r(•,)(T-')'(J(•,).

From (4)
"(7(i= (,) wiBe(Jo(qi); ci, di). (6)

with Jo(71,) = (go')'(•,)('(g ,)). Thus dq,/dI4 = (( )(T-')'(,)

The prior specification is completed by providing f(w, 0). If 0 is intrinsically given we

only require JAw). This is the case with our Poisson regression example in section 5. If not,

we take J(w,O)= J(w)•(•) where, since 0 is a scale parameter, customary choice for J(A) would

be an inverse gamma density or a limit thereof.

f(w) is a distribution on the r-dimensional simplex. If go is a baseline link for g then

we might choose f(u) such that, a priori, g is "centered" around go. The data would then

revise this prior in terms of support for go. Centering g around go corresponds to centering

J around Jo, i.e., from (4), centering 17. qIoB(u; cq, d1) around u. If we center using the

mean, as is typically done in the case of Dirichlet processes, we obtain

ZE(m)IB(u; q, dc) = u (7)
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Suppose w ~Dir(' 1). Then (7 ) requires r-' LB(u;c,ddi) = u. Ifweuse and d asin

section 2 and take r even, expansion of the terms in this summation about U0=1/2, yields,

to a first order approximation, an average which is I&. We omit details.

When does a proper posterior result under the Bayesian model L(6, to, 0)j(4 , w, 0)?
The prior for wo, Dir(-yl) is proper if -y >0. Assuming f(O) is proper, if 0 is unknown, we

may investigate propriety of the posterior by considering the integrability of

JL(~,6,w, 4,)f(6J3W, 4,)dj6 (8)

If AP W, t is proper, then (8) exists. If A61w, 4) is flat, integrability follows if logL is concave

in P for each w and 0. If f(iw, 4) is JeiEreys's prior as in (5) we may utilise Theorem 2.1 of

Ibrahim and Laud (1991). In particular, if as a function of # for fixed w and 4, L is bounded

above and if for each observed yi

eZcp['v-",{Zy, - b(z)}]'[{(z)}LI 2dz < 00 (9)

thený (8) is integrable. Note that (9) does depend upon the link function g enabling (8) to

be integrable for all w. Boundedness of L in 6 holds under very general conditions as in

Barndorff-Nielsen, (1977). These conditions hold for the usual models arising under (1).

4 Implementing the Bayesian model.

The posterior distribution of (6, to, ,) is proportional to L(l, w, 4)-Alw, 4).J).J4). An-

alytic investigation oa this p+(r-1)±l dimensional nonnormalised joint distribution is indea-

sible so we adopt a sampling based approach using a Markov chain Monte Carlo algorithm

to obtain observations essentially from this posterior distribution. In particular, we use a

version of the Gibbs sampler (Gelfand and Smith, 1990) updating f, then w, then 4, to

complete one iteration. The associated nonstandardised complete conditional distributions

are not available explicitly. From (2) and (4), for a given 0, to evaluate L(P, w, 4,) requires

nr incomplete Beta function evaluations so making draws directly from these distributions

is inconvenient. Instead, we utilise a Metropolis-within-Gibbs algorithm (Miller, 1993) with
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a multivariate normal proposal density for ,0, a unrnriate normal proposal density for logo

and a Dirichlet proposal density for wo. Under a logit transformation of wo to r-1 dimen-

sional space this last proposal could be a multivariate normal. We run short Metropolis

sub-trajectories, typically 20 to 50 iterations, for each update within each iteration of the

Gibbs sampler. Such trajectories requires only one new evaluation of the likelihood to pro-

ceed from the current step of the trajectory to the next. Starting points for replications

of the Gibbs sampler are taken in the vicinity of the maximum likelihood estimates for

under the baseline link go and the associated moments estimator for 0 when 0 is present.

If we update wo first, no starting w values are needed. We adaptively improve the proposal

densities-,following Millers-suggestions, for- typically 25 -iterations after which we run five

to ten parallel Gibbs replications using various "convergence" diagnostics to decide when to

stop. The retained output of the Gibbs sampler, denoted by , j 1,2,... ,m

is approximately a sample from the posterior enabling us to carry out any desired posterior

inference.

Matters of model comparison are examined in the Bayesian framework using predictive

distributions. Here we need to study sensitivity to the choice of number of mixands and

to compare the fit of the generalized linear model with unknown link to the associated

model using the baseline link. Under an improper prior specification the prior predictive

distribution, as a function of y I" L(,6, w, O)f(., w, #)d8dtod#, is improper hence difficult to

compare amongst models. We adopt a cross validation approach, in particular, considering

the proper predictive densities f(Vi y(i)), i = 1,2,... , n where y(i) denotes y with yi removed.

See Gelfand, Dey and Chang (1992), for further discussion in this regard. In particular, for

each i we obtain a 95% equal tail predictive interval for y, using f(yi7y(i),.a,) and compare it

with yi,.- A so-called adequacy plot graphs these intervals along with y.• vs. i, perhaps

after relabeling the observations to increasing order. We also calculate f(Yi,..ly(i),.b.), the

conditional predictive ordinate. A large value indicates agreement between the observation

and the model ( Pettit and Young, 1990). A conditional predictive ordinate plot graphs

f(yiy(i),..) vs i. Using these diagnostics, models can be compared at the observation

level, i.e., for each i, i = 1, 2,..., n. Monte Carlo estimation of f (y/ (Jy(i,,) and sampling
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from f( 1 Y(ij.),&,) is taken up in Geffad & Dey (1993). No details ae given here.

5 An illustrative example

To illustrate the modeling of the previous section we study a data set from McCullagh and

Nelder (1989, p.204) concerning the number of damage incidents to cargo vessels caused by

waves. There are three qualitative covariates : ship type (five levels), year of construction

(four levels) and period of operation (two levels). Year of construction is taken to be a

-continuous covariate: Because4he response is a count, Poisson regression seems appropriate.

The n=34 counts ranging from 0 to 58 with four bigger than 30. As in section 2, we assume

an unknown link of the form T-.(J(7.)) with Jn) as in (4). We take the canonical link

71 = go(;&) = log(A)as the baseline. Under the Poisson model • is intrinsically equal to one.

The likelihood is log concave in P given w. We take f( Ito) = 1 with f(w)= Dir(1), i.e., a

flat prior.

Figure 1 shows a conditional predictive ordinate plot, where the i's are associated with

increasing y•, for the baseline model as well as the cases ,=3,4. The r =3 and 4 models

are quite similar both improving upon the baseline model. We tried larger r's with little gain

primarily because, regardless of r, the link function is still strictly increasing. The declining

pattern of the conditional predictive ordinate is expected. Since f("Ijy()i.) is discrete,

when it is concentrated say at 0 and yj,..=O, the conditional predictive ordinate becomes

a substantial point mass. We next compare the r=3 model with the baseline model, the

latter fitted as in Dellaportas and Smith (1992). Figures 2a and 2b show the adequacy plots

for these two models. Better fit would be expected for the r=3 model since it incorporates

two additional parameters (weights). Indeed, 17 intervals fail in 2a, only 8 in 2b. Again if

f(yi'y(,j)) predicts few incidents, shorter predictive intervals arise.

Finally, to compare link functions between the two models it is easier to work with g9-(77).

We "estimated"9 g' by §-', the Monte Carlo posterior mean, i.e., the average of the m =2000

link functions arising from each of the wj*. Comparison of 4-1 and go-' is on a range of 77
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values roughly that over which the model is fitted, [.o(y..),go(y.)J. Figure 3 plots the

ratio 4- /go- over this interval. §-' is l .r than go-' for small 7,, i.e., 4 is smaler than

go for small /, vice versa for large p. This is reflected in figure 2. Relative to the baseline

model the intervals for the r=3 model are lower for small y,, higher for large y,.

6 Summary

Our approach to modeling an unknown link function using a mixture of beta densities is di-
.rectly applicable to, other statistical settings.involving modeling a monotone function. These

include integrated hazards in survival models and bias functions in size-biased sampling.

The Bayesian inference framework with a sampling-based implementation offers a relatively

straightforward fitting technique.

References

[(1 Angers, J. F. and Delampady, M. (1992a), Hierarchical Bayesian curve fitting and

smoothing. Can.J.Statist., 20, 35-49.

[2] Barnd6rff-Nielsen, 0. (1977), Information and exponential families in statistical theory.

John Wiley, Inc., New York.

[31 Blight, B. J. N. and Ott, L. (1975), A Bayesian approach to model inadequacy for

polynomial fegression. Biometrika, 62, 79-80.

[4] Dellaportas, P. and Smith, A. F. M. (1992), Bayesian inference for generalised linear

and proportional hazard models via Gibbs sampling. Appl. Statist. 42, 443-460.

[5] Diaconis, P. and Ylvisaker, D. (1985), Quantifying prior opinion. In:Bayesian Statistics

2, eds. J.M.Bernardo et.al. 133-156. North Holland, Amsterdam.

[6] Ferguson, T. (1973), A Bayesian analysis of some nonparametric problems. Ann. Statist.,

1, 209-230.

10



[71 Gelfand, A. E. and Smith, A. F. M. (1990), Sampling based approaches to calculating

gn densities. J. Amer. Statist. Assoc. 85 ,398-409.

[81 Gelfand, A.E., Dey, D.K. and Chang, H. (1992), Model determination using predictive

distributions with implementation via sampling-based methods. In:Bayesian Statistics

4, eds. J.M.Bernardo et.al. 133-156. Oxford University Press. Oxford, 147-167.

[9] Gelfand, A.E. and Dey, D.K. (1992), Bayesian model choice: asymptotics and exact

calculations. To appear in J.R.Statist. Soc., B. (To appear)

[101 Hinkley, D. V. (1985), Transformation diagnostics for linear models. Biometrilca, 72,

487-9;6.

[111 Ibrahim. J, and Laud, P. (1991). On Bayesian analysis of generalized linear models using

Jeffreys's prior. J. Amer. Statist. Assoc., 86, 981-986.

[121 McCullagh. P. and Nelder. I. A. (1989), Generalized linear models. Chapman and Hall,

London.

(131 Miller, P. (1991), A generic approach to posterior integration and Gibbs sampling. J.

Amer. Statist. Assoc. (to appear).

[141 O'Hagan, A. (1978), Curve fitting and optimal design for prediction. J.R. Statist. Soc.,

B, 40, 1-42.

[151 Pettit, L. I. and Young, K. D. S. (1990), Measuring the effect of observation on Bayes

factors. Biometr9ca, 77, 455-466.

(16] Pregibon, D. (1980). goodness of link tests for generalized linear models. Appl. Statist.,

29, 15-24.

[171 Smith, A. F. M. and Gelfand, A. E.(1992), Bayesian Statistics without tears: a sampling

resampling perspective. Amer. Statist., 46, 84-88.

(18] Weerahandi, S. and Zidek, J. V. (1988), Bayesian nonparametric smoothers.

Can.J.Statist, 16, 61-74.

11



Figures

Figure 1: Conditional predictive ordinate plot for r-3 model (e), r=4 model(&) and

baseline model (x).

Figure 2: 2a is an adequacy plot for the baseline model, 2b for r=3 model. 95% equal

tail predictive interval are indicated by V and A, observed value by +.

Figure 3: Plot of §-'(7)/go-1 (i) vs i•7.
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as an unknown in the model. Since the link function is usually taken
to be strictly increasing, by a strictly increasing transformation of
its range to the unit interval we can model it as a strictly increasing
cumulative distribution function. The transformation results in a
domain which is [0,11 as well. We model the cumulative distribution
function as a mixture of Beta cumulative distribution functions, noting
that the latter family is dense within the collection of all continuous
densities on [0,1]. For the fitting of the model we take a Bayesian
approach, encouraging vague priors, to focus upon the likelihood. We
discuss choices of such priors as well as the integrability of the
resultant posteriors. Implementation of the Bayesian approach is
carried out using sampling based methods, in particular, a tailored
Metropolis-within-Gibbs algorithm. An illustrative example utilizing
data involving wave damage to cargo ships is provided.
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